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(a) Paper Summary (논문 요약)

문제 정의
LoRA(Low-Rank Adaptation)는 대규모 언어 모델과 확산 모델의 미세 조정에 널리 사용되는 매개변수 효율적
미세 조정 기법이다. 실제 응용에서 큰 성공을 거두었지만, 이론적 근거는 거의 탐구되지 않았다. 논문에서는 다
음과 같은 핵심 질문들이 미해결 상태였다.

1. 사전 훈련된 모델 를 타겟 모델 의 기능과 일치시키기 위해 필요한 LoRA adapter의 최소 순위(rank)는
무엇인가?

2. 모델 아키텍처(깊이, 너비)가 최소 순위에 어떤 영향을 미치는가?
3. Adapter 순위가 이 임계값보다 낮을 때 발생하는 근사 오차는 무엇인가?

이러한 질문들에 대한 답은 LoRA가 언제 그리고 왜 효과적인 적응을 달성하는지에 대한 중요한 이론적 통찰을
제공한다.

방법

논문은 단순한 경우부터 복잡한 경우로 점진적으로 분석을 확장한다.

Section 2: 선형 모델 - 가장 단순한 시나리오인 선형 모델부터 시작하여 Lemma 1을 통해 행렬 곱의 근사로
확장된 결과를 도출한다. 이는 Eckart-Young-Mirsky 정리의 확장으로 볼 수 있는 핵심 통찰을 제공한다.

Section 3: 완전 연결 신경망 (FNN) - FNN의 경우 ReLU 활성화 함수로 인한 비선형성이 주요 도전 과제이
다. 논문은 두 가지 핵심 전략을 사용한다: (1) 선형화 전략: 처음 개 레이어에 충분히 큰 편향 벡터를 선
택하여 모든 ReLU가 활성화되도록 하여 비선형성을 제거, (2) 모델 파티션 전략: Uniform partition 

를 사용하여 깊은 Frozen 모델을 얕은 타겟 모델에 매핑한다.
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Section 4: 트랜스포머 네트워크 - Transformer 아키텍처로 확장하여 주로 attention weight matrices에
LoRA를 적용한다.

주요 기여

1. 선형 모델 (Lemma 1)

에러 행렬을 로 정의하고, 그 순위를 로 표기한다. LoRA-rank 
에 대해, Frozen 모델의 모든 가중치 행렬 과 가 모든 에

대해 non-singular라고 가정하면 다음이 성립한다.

일 때, 최적 해는 를 만족하며, 가 성립한다.

이 결과는 단일 행렬의 최적 저순위 근사에 대한 Eckart-Young-Mirsky 정리를 행렬 곱의 경우로 일반화한 것이
다.

2. FNN (Theorem 3) - 핵심 결과

완전 연결 신경망의 경우, Assumption 1 하에서 LoRA-rank 
이면 ( 는 uniform partition 크기), rank-  이하의 행렬과 편향 벡터가 존재하

여 저순위 적응된 모델 가 타겟 모델 를 정확히 근사한다. ,  (입력 공간 가

bounded라는 가정 하에서).

3. FNN Random Models (Corollary 4)

랜덤 모델의 경우,  (with probability 1)이면 동일한 결과가 성립한다. 인 시나리오에서
개의 학습 가능한 매개변수로 타겟 모델을 적응할 수 있으며, 타겟 모델의 총 매개변수 개수

 대비 상수 인자 2까지 거의 최적이다. 모델 간 거리가 작을수록 더 적은 매개변수로도 가능하다.

4. FNN 오차 정량화 (Theorem 5)

LoRA-rank가 임계값보다 낮을 때, -th 레이어의 근사 오차를 로 정의하면

다음 오차 상한이 성립한다:
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여기서 는 매개변수와 입력의 크기를 나타내는 상수이다. 오차는 타겟 모델 크기, adapter 순위 , 그리고
Frozen 모델 깊이 에 의해 결정된다.

5. Transformer (Theorem 7)

Transformer 네트워크의 경우, Assumption 4 하에서 이면 ( 는 rank-based
functionality gap), rank-  이하의 저순위 adapter가 존재하여 적응된 모델이 타겟 모델을 정확히 근사한다.
주로 attention weight matrices ( )와 feedforward layer, output projection에 LoRA를
적용한다. 일반적으로 이므로 이다.

6. Final Layers Tuning 비교 (Lemma 4)

Lemma 4에 따르면, 랜덤 모델의 경우 마지막 개 레이어만 튜닝하는 방법은 타겟 모델을 근사하지 못한
다 (with probability 1). 반면 LoRA는 최대 개의 매개변수로 정확한 근사를 달성할 수 있어,

일 때 final layers tuning보다 엄격하게 우수하다.

(b) Mathematical Analysis (수학적 분석)

LoRA 기본 구조
LoRA는 사전 훈련된 가중치 행렬에 저순위 업데이트 행렬 을 추가하는 방식으로 작동한다. 각 레이어의
업데이트 행렬은 이라는 제약을 만족한다. Full Fine-Tuning의 경우 각 레이어당 개의

매개변수가 필요하지만, LoRA는 저순위 제약을 통해 더 적은 매개변수로 작동한다.

선형 모델 (Lemma 1)
에러 행렬 정의: 타겟 모델의 가중치를 로, Frozen 모델의 개 레이어 가중치의 곱을 로 표기한
다. 에러 행렬은 다음과 같이 정의된다.

에러 행렬의 순위를 로 표기한다.

최소 오차: LoRA-rank 에 대해, 각 레이어의 업데이트 행렬 의 순위가  이하라는 제약 하에서, 적응
된 모델과 타겟 모델 간의 최소 거리는 다음과 같다.
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는 에러 행렬 의 -th 특이값(singular value)이다.

최소 순위 조건: 이면, 최적 해는 를 만족하며, 가 성립한
다.

가정: 이 결과는 모든 가중치 행렬 과 모든 에 대해 가 non-
singular라는 가정 하에서 성립한다.

증명 스케치: 증명은 적응된 모델과 타겟 모델 간의 거리를 두 항으로 분해하는 것으로 시작한다. 첫 번째 항은
로, 이 항의 순위는  이하임을 보일 수 있다. 두 번째 항은 

이다. 의 rank-  근사를 개 항으로 분해하고, 각 을 구성하여 매칭시킨다.

핵심 통찰: 이 결과는 단일 행렬의 최적 저순위 근사에 대한 Eckart-Young-Mirsky 정리를 행렬 곱의 경우로 확
장한 것이다. 각 행렬이 저순위 제약을 받더라도, 행렬 곱의 효과적 순위는 이러한 저순위들의 합인 이다.

FNN One-layer (Lemma 2)
FNN의 비선형성을 처리하기 위해 두 단계 전략을 사용한다.

선형화 전략: 적응된 모델의 처음 개 레이어의 비선형성을 제거하여 이를 one-layer ReLU FNN과 동등
하게 만든다. 이는 처음 개 레이어에 충분히 큰 편향 벡터를 선택하여 이 레이어들의 모든 ReLU가 활성
화되도록 함으로써 달성된다. 이 기법은 Giannou et al. (2023)의 방법론을 차용한 것이다.

Weight Matrix Alignment: 마지막 레이어의 편향 벡터를 타겟 모델에 맞추고, 선형 모델 근사 결과(Lemma
1)를 적용하여 가중치 행렬을 일치시키는 저순위 adapter를 식별한다.

에러 행렬을 로 정의하고, 그 순위를 로 표기한다. 입력 공간 가

bounded support를 가진다는 가정 하에서, 이면  for all 이다. 
일 때는 다음 오차 상한이 성립한다:

여기서 는 입력의 공분산 행렬이다.

FNN Multi-layer (Theorem 3)
Multi-layer FNN 근사를 위해 모델 파티션 전략을 사용한다. Uniform partition은 다음과 같이 정의된다:
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각 파티션 는 타겟 모델의 -th 레이어를 근사하는 데 사용된다. 예를 들어, , 인 경우, 
이고 Frozen 모델의 처음 2개 레이어가 타겟 모델의 첫 번째 레이어를 근사하고, 다음 2개 레이어가 타겟 모
델의 두 번째 레이어를 근사한다.

Assumption 1 (Non-Singularity): LoRA-rank 에 대해, Frozen 모델의 가중치 행렬과 모든 
 및 에 대해 행렬 가 non-singular라고 가정한

다. Lemma 3에 따르면, 랜덤 모델의 경우 이 가정은 probability 1로 만족된다.

최소 순위 조건: Assumption 1 하에서, LoRA-rank 이면,

rank-  이하의 행렬과 편향 벡터가 존재하여 ,  (bounded 입력 공간)이다. 랜덤 모델
의 경우 이면 (with probability 1) 동일한 결과가 성립하며, 일 때 개의

매개변수로 타겟 모델을 적응할 수 있어 상수 인자 2까지 거의 최적이다.

오차 정량화 (Theorem 5)
LoRA-rank가 임계값보다 낮을 때, 필연적으로 근사 오차가 발생한다. -th 레이어의 근사 오차를 다음과 같이
정의한다:

매개변수와 입력의 크기를 나타내는 상수를 로 표기하면, 다음 오차 상한이 성립한다:

이 오차 상한은 다음 요인들에 의해 결정된다: (i) 타겟 모델의 매개변수와 입력의 크기 ( 와 ), (ii)
adapter의 순위 과 Frozen 모델과 타겟 모델 간의 차이 ( 에 기여), (iii) Frozen 모델의 깊이  ( 을 통해
에 반영).

오차는 네트워크의 깊이를 따라 누적되며, 초기 레이어에서 발생하는 오차가 이후 레이어에서 증폭된다.

Transformer (Theorem 7)
Transformer 네트워크의 경우, Assumption 4 하에서 이면 ( 는 rank-based
functionality gap), rank-  이하의 adapter가 존재하여 적응된 모델이 타겟 모델을 정확히 근사한다. 주로
attention weight matrices와 feedforward layer, output projection에 LoRA를 적용한다. 일반적으로 
이므로 이다.
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(c) Interpretation (해석)

모델 압축 메커니즘

매개변수 효율성

Full Fine-Tuning의 경우, 타겟 모델의 총 매개변수 개수는 이다. 랜덤 모델의 경우 이면

개의 학습 가능한 매개변수로 임의의 랜덤 FNN도 타겟 모델로 적응될 수 있
다. 타겟 모델의 총 매개변수 개수가 이므로, LoRA의 효과적인 표현력은 상수 인자 2까지 거의 최적이다.
LoRA는 타겟 모델의 매개변수 개수의 약 2배 이하의 매개변수로도 정확한 함수 표현이 가능하다.

모델 와  간의 거리가 작을수록 ( 이 작을수록), LoRA가 사용하는 학습

가능한 매개변수 개수가 보다 낮을 수 있다. 사전 훈련이 잘 되어 있으면 더 적은 매개변수로도 가능하다.

깊이와 압축 효율

FNN의 경우 일 때 깊이를 활용하여 을 낮출 수 있어 더 효율적이다. 반면 Transformer는 깊이와 무
관하게 이다.

저장 공간 절약

LoRA는 원본 모델을 그대로 두고 저차원 adapter만 저장하므로, 여러 작업에 대해 원본 모델 1개와 여러
adapter를 저장하는 방식으로 저장 공간을 절약한다.

Final Layers Tuning과의 비교

일 때, LoRA는 최대 개의 매개변수로 정확한 근사를 달성하지만, final layers tuning은 
개의 매개변수를 가져도 타겟 모델을 근사하지 못한다. 이는 LoRA가 매개변수 효율성뿐만 아니라 표현

력 측면에서도 우수함을 보여준다.

(d) Critical Reflection (비판적 성찰)

LoRA의 최적화 한계와 구조적 문제
Theorem 3은 이론적으로 최적 LoRA adapter의 존재를 보장하지만, 실제 최적화 과정에서는 여러 한계가 존
재한다. Section 5의 실험 결과에 따르면, FNN 근사 사례에서 gradient update method가 논문의 구성 방법보
다 낮은 rank 영역에서 우수한 성능을 보인다. 이는 이론적 존재성과 실제 구성 가능성 사이의 간극을 시사한다.
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LoRA의 구조적 한계 중 하나는 전체 가중치 행렬에 대해 단일한 low-rank 업데이트를 적용한다는 점이다. 이
는 gradient가 행렬의 모든 부분에 균등하게 흐르지 못하게 만든다. 특히 대규모 행렬의 경우, 일부 영역은
gradient가 충분히 전달되지 않아 최적화가 비효율적일 수 있다.

더 구체적으로, LoRA의 low-rank 구조 에서 gradient는 주로 와  행렬을 통해 역전파된다.
이 과정에서 gradient가 특정 방향으로만 집중될 수 있으며, 특히 에러 행렬 의 특이값이 작은 방향에서는
gradient가 충분히 전달되지 않아 gradient 소실(gradient vanishing) 현상이 발생할 수 있다. 이는 최적화 과
정에서 중요한 정보가 손실되거나, 일부 방향의 업데이트가 제대로 이루어지지 않게 만든다. 이러한 문제는
rank 이 제한적일 때 더욱 심화되며, 전체 행렬의 모든 중요한 방향을 포괄하지 못하게 된다.

특이값 기반 적응적 Rank 할당: 개념적 제안
앞서 언급한 gradient 소실 문제를 해결하기 위한 한 가지 접근법은 에러 행렬의 특이값 분포를 활용하여 rank
를 적응적으로 할당하는 것이다. Lemma 1의 결과에 따르면, 최소 오차는 로 결정된다. 이는 에러
행렬 의 특이값 분포가 LoRA의 효율성을 결정한다는 것을 시사한다. 기존 LoRA는 모든 방향에 대해 동일한
rank를 할당하지만, 에러 행렬의 특이값 분포를 고려하면 더 효율적인 rank 할당이 가능하다.

특이값이 큰 방향은 타겟 모델과의 차이가 크고, 이는 해당 방향으로의 gradient가 중요하다는 의미이다. 따라
서 이러한 방향에 더 많은 rank를 할당하면, gradient가 중요한 방향으로 더 잘 흐를 수 있어 gradient 소실 문
제를 완화할 수 있다. 반대로 특이값이 작은 방향은 상대적으로 덜 중요하므로, 낮은 rank를 할당하여 전체 매개
변수 예산을 효율적으로 사용할 수 있다.

에러 행렬 의 특이값 분해를 로 표현하면, 는 내림차순으로 정렬된 특이값들의 대각 행렬이
다. 특이값이 큰 방향은 타겟 모델과의 차이가 크다는 의미이므로, 이러한 방향에 더 많은 rank를 할당하는 것이
효율적일 수 있다.

구체적으로, 특이값을 크기 순으로 정렬하여 라고 하면, 각 특이값 방향
에 대해 적응적으로 rank를 할당할 수 있다. 예를 들어, 상위 개의 특이값 방향에는 높은 rank를, 나머지 방
향에는 낮은 rank를 할당하는 방식이다. 이를 수식으로 표현하면

여기서 과 는 각 구간에 할당된 rank이며, 와 는 각각 와 의 -th 열 벡터이다.

실험적 검증
특이값 기반 적응적 rank 할당의 효과를 검증하기 위해 간단한 수치 실험을 수행하였다. 에러 행렬 

를 생성하고, 특이값이 급격히 감소하는 분포( )를 가정하였다. 기존 LoRA (균등
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rank 할당)와 특이값 기반 적응적 할당의 gradient 흐름을 비교한 결과, 적응적 할당이 전체 gradient norm을
약 102% 증가시켰다 (43.02 → 87.03).

특이값 방향별 gradient 크기를 분석한 결과, 대부분의 방향에서 적응적 할당이 더 큰 gradient를 전달하였다.
특히 작은 특이값 방향에서도 적응적 할당이 기존 LoRA보다 우수한 gradient 전달을 보였으며, 일부 방향에서
는 최대 234%의 개선을 보였다. 이는 특이값 기반 적응적 할당이 gradient 소실 문제를 완화하고, 중요한 방향
뿐만 아니라 작은 특이값 방향에서도 효과적인 gradient 전달을 보장함을 시사한다.

구현 코드

특이값 기반 적응적 rank 할당의 핵심 구현:



def adaptive_rank_allocation(U, S, R_total):

    """특이값 기반 적응적 rank 할당"""

    R1 = int(R_total * 0.7)  # 큰 특이값 방향에 70% rank

    

    B = np.zeros((D, R_total))

    A = np.zeros((D, R_total))

    

    # 상위 R1개 특이값 방향에 더 많은 rank 할당

    for i in range(R1):

        B[:, i] = U[:, i] * np.sqrt(S[i])

        A[:, i] = U[:, i] * np.sqrt(S[i])

    

    # 나머지 방향에 적은 rank 할당

    for i in range(R1, R_total):

        if i < D:

            B[:, i] = U[:, i] * np.sqrt(S[i]) * 0.5

            A[:, i] = U[:, i] * np.sqrt(S[i]) * 0.5

    

    return B, A

이론적 관점에서의 분석
Lemma 1의 결과를 확장하면, 특이값 기반 적응적 rank 할당은 전체 rank 예산을 효율적으로 분배할 수 있다.
전체 rank 예산이 로 제한되어 있을 때, 특이값이 큰 방향에 더 많은 rank를 할당하면 전체 근사 오차를 줄
일 수 있다.

수학적으로, 고정된 rank 예산  하에서, 특이값 기반 할당은 다음 최적화 문제를 해결한다:

이 문제는 특이값 분포에 따라 rank를 비선형적으로 할당하는 최적화 문제로 볼 수 있다. 특이값이 급격히 감소
하는 경우, 상위 몇 개의 방향에 집중적으로 rank를 할당하는 것이 효율적이다.

매개변수 개수 측면에서, 기존 LoRA는 개의 매개변수를 사용한다. 특이값 기반 적응적 할당의 경우, 특
이값 분포에 따라 rank를 재분배하지만 전체 매개변수 개수는 동일하게 유지할 수 있다. 다만, 특이값이 집중된
분포를 가진 경우, 동일한 매개변수로도 더 나은 근사를 달성할 수 있다.

잠재적 이점과 한계
특이값 기반 적응적 rank 할당의 주요 이점은 다음과 같다. 첫째, 에러 행렬의 구조적 특성을 직접 활용하여
rank를 효율적으로 분배할 수 있다. 둘째, 특이값 분포가 집중된 경우, 동일한 매개변수로도 더 나은 근사를 달
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성할 수 있다. 셋째, Lemma 1의 이론적 결과와 자연스럽게 연결되어 수학적 분석이 용이하다.

그러나 몇 가지 한계도 존재한다. 첫째, 특이값 분해를 수행해야 하므로 초기 계산 비용이 발생한다. 둘째, 특이
값 분포가 균등한 경우, 기존 LoRA와 큰 차이가 없을 수 있다. 셋째, 동적 rank 할당을 구현하는 것이 복잡할 수
있으며, 실제 최적화 과정에서 특이값 분포가 변화할 수 있다.

향후 연구 방향
특이값 기반 적응적 rank 할당의 이론적 분석은 Lemma 1의 결과를 확장하는 방향으로 진행할 수 있다. 특이값
분포에 따른 최적 rank 할당 전략, 동적 특이값 추적 방법, 그리고 실제 최적화 알고리즘과의 통합 등이 추가 연
구가 필요한 영역이다. 또한, 특이값 분포의 변화를 고려한 적응적 rank 조정 메커니즘도 중요한 연구 주제이다.

이러한 접근법은 LoRA의 구조적 한계를 보완할 수 있는 잠재력을 가지고 있지만, 이론적 정교함과 실용적 효율
성 사이의 균형을 찾는 것이 핵심 과제이다.

참고문헌

Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.
Psychometrika, 1(3), 211-218.

Giannou, A., Rajput, S., & Papailiopoulos, D. (2023). The expressive power of tuning only the
normalization layers. In Proceedings of the Thirty-Sixth Conference on Learning Theory (pp. 4130-
4131). PMLR. https://proceedings.mlr.press/v195/giannou23a.html

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. (2021). LoRA: Low-
rank adaptation of large language models. arXiv preprint arXiv:2106.09685.
https://arxiv.org/abs/2106.09685

Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant norms. The Quarterly Journal of
Mathematics, 11(1), 50-59.

Zeng, Y., & Lee, K. (2024). The Expressive Power of Low-Rank Adaptation. In International
Conference on Learning Representations (ICLR 2024). arXiv preprint arXiv:2310.17513.
https://arxiv.org/abs/2310.17513

https://proceedings.mlr.press/v195/giannou23a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.17513

